
Analysis of Data Structures in the Java Class Libraries

Using Reflection
Matthew Robbins

Second Year, Computer Science
Aberystwyth University

mcr1@aber.ac.uk

ABSTRACT

Built into the java class library are many data structures that one

may use to store information for later querying or retrieval.

Often, the decision on which structure to use will depend on the

speed of the most performed action(s) which can vary

dramatically between data structures, especially when using large

data sets. Using the Java Reflection API, I have found some

evidence to suggest that the time complexity of a data structure

may indeed depend on the number of members, but these test

were inconclusive and further investigation is needed before any

definitive conclusions can be drawn

The number of members in user-implemented data structures

(ones not provided in the Java class library) turned out to be

much less than in the provided data structures as I hypothesized.

I believe this to be because the classes in the Java class library

must have been built to cater for a wider variety of tasks due to

the large amounts of people and programs that will be using it for

different purposes.

Keywords

Data structure, abstract, reflection, package, Java class library,

CSV file

1. INTRODUCTION
In the Java class library, there is a collection of Java interfaces

and classes that implement fundamental but vital data structures

that programmers can use in appropriate situation. These data

structures range from lists of elements (Arrays), to lists of linked

nodes (Linked list) to structures like a Hash table that stores keys

and values.

Due to the diverse nature of the construction of these data

structures, the speed for a given task can vary by immense

amounts, for example inserting an element could be as easy as

tagging it onto the end of a list, or as time consuming as shuffling

all the elements along to make room for the new one. This makes

choosing the right data structure for a given activity essential, as

the fundamental differences between different structures can

render some useless.

I am investigating the complexity of the data structures built into

Java to determine:

 If there is a link between the complexity of the code of

the structures, and its time complexity.

 The difference in code complexity between data

structures provided in the Java class library, and ones

that users have created.

Primarily, I will be focusing on the most commonly used data

structures such as the Hash table, Array List and Linked List –

but I will be using other similar structures (for example all that

are a sub class of java.util.AbstractList) to get a better idea of

each collection and some average values.

I hope to find some distinguishable different between the

complexity of the class, that may relate to their big O time

complexity.

2. HYPOTHESES

2.1 Data Structures
By analyzing the complexity of the data structures I test, I hope

that the data will lend support to a number of hypotheses:

1. The data structures that provide high efficiency for

larger data sets (and have a low time complexity) will

have a smaller amount of methods and members as I

believe their code must have been written very

carefully and sparingly. I think this will contribute to

how quickly these structures are able to process large

amounts of data, as there are no unnecessary

instructions and calculations

2. Data structures that possess a worse time complexity

will have more methods – methods that provide special

functionality that may be essential in some cases – but

may slow down the data structure when it is handling

vast amounts of data.

3. Data structures not included in the Java class libraries

will be smaller, with fewer members in each class, as I

believe they will not be as useful to such a wide range

of tasks like the Java class library ones must be.

3. METHODOLOGY
To obtain the data I need to analyze the Java classes, I wrote a

small Java program that uses the reflection API to first see if a

class of a given name exists, and then find information about that

class such as what methods, variables and constructors it

contains, as well as what is it’s superclass, and the package

where it is located. Java Reflection is a very powerful tool, and

was essential to this project; the ability for Java to introspect

upon itself is something many languages do have in such an

advanced format.

My program is command line driven, and the user gets a set of

options such as:

 Print statistics for a single class

 Read classes from a file and print their stats to the

terminal or to a CSV (comma separated value) file.

 Find and print out to a CSV file all the classes that a

given classes (or many classes from a text file) refer to.

This allows the user a wide range of freedom, as they are able to

use the program as a standalone application, or can have it output

CSV files that can be later opened in a spreadsheet application.

I have used this application to generate the data I require to test

my hypotheses, adding functionality (such as counting the

average number of parameters per method) sometimes where

needed.

3.1 Data Structure Collections
I am going to be looking at 4 collections of data structures in

particular, grouped by which interface they extend:

 AbstractList (Vector, ArrayList, LinkedList, Stack…)

 AbstractMap (HashMap, EnumMap…)

 AbstractQueue (PriorityQueue, DelayQueue…)

 Dictionary (Hashtable)

These collections contain most of the more interesting and

commonly used data structures provided in the Java class library.

Other structures such as heaps and trees would be interesting to

examine, but I would first have to write and implement them –

bringing may in coding skills as another variable that may well

affect the end results.

The statistics that I need will be obtained by running each

collection of names through my application by sending them in as

a text file. My program will then find and generate the statistics

for each class and store them in a hash table until they are all

ready to be written to a CSV file for easy analysis.

3.2 Scope and Limitations
As stated above, I am just going to me exploring the 4 (main)

collections of data structures that are implemented in the Java

class library. The statistics that I am going to be generating for

each class will include: the total amount of public methods,

parameters, fields, members and all methods. I will also be

obtaining the average number of parameters for all of the

methods in that class.

The main limitations in providing good and accurate data for this

report are the time and skills available to me, as I do not have an

abundance of time, and I have never examined the Java

Reflection API before now.

4. RESULTS
I started off by getting the basic statistics of each class by putting

a text file with a collection of classes through my application.

This returned CSV files with the following data:

Table 1. AbstractList’s output

I added an “Average” field to allow easier analysis of the data,

and then plotted it in a scatter graph (Figure 1).

Figure 1. Quantity of each statistic for the 4 different data

structure collections

Figure 1 quite definitively shows that the Dictionary collection,

comprising of just itself and Hashtable, has the least amount of

members out of all of the collections. The AbstractMap

collection (containing TreeMap, HashMap, EnumMap etc) has

the highest number of members by quite a way, and assuming my

hypothesis is true, it will mean that the AbstractMap structures

will be quite slow, and the Dictionary structure – Hashtable to be

faster in comparison. It also states that AbstractList and

AbstractQueue will be slower than the Dictionary structure.

The shape of the graph shows a fairly consistent correlation

between a class and the different type of statistics that I have

collected about it, partly because some values (such as total

methods) rely on others (public methods).

4.1 Time Complexity

Figure 2. The time complexity values for some data

structures

Figure 2 shows the time complexity values for a range of data

structures, with at least one from each collection that I am

examining.

4.2 Comparing Statistics with Big O
My hypothesis was that the data structures that were generally

quicker with large data sets would have fewer members than the

others. The data so far supports that statement, as the

Hashtable’s statistics were the lowest, and its time complexity is

better than the rest, as O(1) means that that operation will take a

constant time no matter how big the data set is.

My data shows that AbstractMap structures have the most

number of members by a considerable amount – almost twice as

much as others. The time complexities of structures that extend it

are worse than that of the Hashtable, but are not the worst of all,

as I was expecting. Their time complexity of O(log n) is

relatively good, even for large data sets, but it still grows as the

data size increases.

Data structures like Priority Queue that are a subclass of

AbstractQueue also have a time complexity of O(log n). The

AbstractList structures: LinkedList and ArrayList are both

quicker to insert at the beginning/end, but slower to index and

insert in the middle than the AbstractQueue structure. This

divide may be represented in the graph by each type having 2

higher values than the other. Whilst the data so far seems to

suggest this, it is currently inconclusive and more testing would

be needed before any definitive conclusions could be drawn.

4.3 Data Structures Not implemented in the

Java Class Library
Included in the time complexity chart are the values for “Heap”

and “Binary tree” so they can be compared and contrasted with

the other values. I was surprised to see that they shared the same

time complexity as the structures in AbstractMap and

AbstractQueue, and contrary to my hypothesis, imagined that that

Heap and Binary Tree may have a similar number of members.

Figure 3. Quantity of Statistics With Binary Heap and Tree

As Figure 3 shows, the Binary Heap and Binary Tree

implementations I found online had much less members than the

others, proving part 3 of my hypothesis correct. I believe there

are more members in the Java class library classes, as they must

be very resilient and versatile because vast numbers of people

are going to be using them for a huge range of activities. The

user created classes can afford to contain fewer features, and

therefore not include so many methods and other members.

5. CONCLUSIONS

5.1 Class Complexity vs Time Complexity
My hypotheses enjoyed varying degrees of success, the first two

parts about the correlation between complexity of the data

structure class and its time complexity was initially supported by

the evidence, as the Hashtable had the least amount of members,

and was the quickest to access.

This hypothesis was then contradicted by other evidence showing

other data structures having varying degrees of complexity with

no relation to the speed of access. This experiment was

inconclusive, and may warrant further investigation at some point

to examine if there is any definite relation.

5.2 Data Structure Classes Will Be Smaller

Outside the Java Class Library
Within the limited scope of my tests, I found evidence that

supported my hypothesis that classes made by users would not

contain such a large amount of members as standard Java files in

the Java class library. I believed this would be the case as the

Java classes must be built to be very versatile and implement all

of the functionality a programmer may need from it, resulting in

more code and more members.

Further experiments could go on to test to see if other

unimplemented data structures and other classes are still less

complex than the in-built classes.

6. REFERENCES
Wikipedia article on ArrayList time complexity:

http://en.wikipedia.org/wiki/Arraylist REF

Hexopedia - Article on data structure time complexities:

http://essays.hexapodia.net/datastructures/

java-tips.org – Binary Heap Implementation - Mark Allen Weiss:

http://www.java-tips.org/java-se-tips/java.lang/priorityqueue-

binary-heap-implementation-in-3.html

java2s.com – Binary Tree Implementation:

http://www.java2s.com/Code/Java/Collections-Data-

Structure/BinaryTree.htm

